
]É{Ç YtätÜÉ
CONSULENZA INFORMATICA

John Favaro Tel +39 050 55 60 74
Via Gamerra, 21 Fax +39 050 6143 1145
56123 Pisa - Italy john@favaro.net

www.favaro.net/john/

The Piranha Pond

John Favaro

Computer Programming, Italian Edition, CP134, May 2004

In a recent column [1] an interesting economic analogy (the theory of options) was found to
be very useful for explaining an important aspect of agile software development projects: the
value of flexibility. In this column we will exploit a different economic analogy to explore
another aspect of agile software development projects: the manner in which information is
absorbed and transformed into implementation [2]. The dynamics of agile development
projects can be difficult to explain because they lead to principles that seem strange and
counter-intuitive. One such principle is known informally as YAGNI (“You Aren’t Going to
Need It”). The YAGNI principle states essentially that a project should not plan for the future;
instead, it should concentrate only on the present. Such a principle seems to run so contrary to
common notions of good software project management and planning that it is not surprising
that many people acquire a view of agile software development as poorly disciplined at best,
and chaotic at worst.

Yet once the dynamics of agile development are understood, such a principle makes a good
deal of sense. Economists went through a similar process of discovery over the last century as
the dynamics of markets were gradually understood, and their experience can provide some
useful insights. It was just over one hundred years ago that Louis Bachelier made an amazing
claim: the movements of stock markets are random. Random? Impossible, everybody cried:
markets aren’t random, they obviously respond to important events like profit announcements
and mergers! But there was a problem: it really was impossible to distinguish real market
price movements from random movements. You don’t believe it? Then try yourself: only one
of the stock charts in Figure 1 is real – all the others were generated randomly. I’ll bet that
you can’t tell which is the real one.

Only one of these charts is real

]É{Ç YtätÜÉ
CONSULENZA INFORMATICA

- 2 -

But even if it’s true, the question remains: why is it true? The answer arrived in 1964 with the
Efficient Market Hypothesis formulated by Fama. According to the hypothesis, the
participants in the market are always hungry for new information. As soon as new
information arrives, it is quickly disseminated, analyzed, and digested. Like a pool of
piranhas, investors pounce on it and strip it to the bones. What happens to this information? It
is immediately converted into market prices, so that the state of the market always completely
reflects the information available. But think about what that implies: the future has been
completely separated from the past. By absorbing all past information in an efficient and
complete manner, the market has nothing more to say about the future. And so like a drunken
sailor, the market stumbles from one new piece of new information to another, completely
absorbing it and waiting for the next, unpredictable arrival. This random walk (its official
name) is the phenomenon that characterizes efficient markets.

The dynamics of agile software development projects are surprisingly similar to what I have
just described. Agile projects strive to be efficient projects, disseminating, absorbing, and
digesting new information as quickly as possible. To see this, just take a look at the core
practices: collective ownership, daily meetings, pair programming, the absence of fixed roles
that tend to compartmentalize information. Agile projects don’t wait to implement new
information, either. In contrast to BDUF (Big Design Up Front), implementation is
undertaken as soon as possible and all implications immediately considered.

Do you see what happens? Like efficient markets, efficient projects separate the past from the
future, following their own form of random walk. On the one hand, the system implements
everything that is currently known. Core practices such as test-first programming, refactoring,
and the daily build ensure that the system is always up to date, ready to react to any new
information. On the other hand, the system carries no extra functionality, implemented only
out of fear of what “might” happen. Agile developers realize that such “hooks” only make the
system more complex and difficult to understand. Above all, they waste resources on
something that might not even be needed (YAGNI principle) – resources that could be used to
implement new requirements when they are really known. This is all part of a new approach
to requirements management already discussed in a previous column [3].

Like efficient markets, efficient projects demonstrate an important principle: the best way to
prepare for the future is to take good care of the past.

P.S. the upper-right hand chart tracks the S&P500 stock index from November 2002 to
November 2003. I generated the others by flipping a coin 365 times.

Resources

[1] J. Favaro, “The Tomato Garden,” Computer Programming, Italian Edition, CP133,
April 2004.

[2] J. Favaro, “Efficient Markets, Efficient Projects, and Predicting the Future,”
Proceedings 5th International Conference on Agile Methods, Garmisch, June 2004.

[3] J. Favaro, “A Quiet Revolution in Requirements Management,” Computer
Programming, Italian Edition, CP124, May 2003.

