
John Favaro
CONSULENZA INFORMATICA

John Favaro Tel +39 050 55 60 74
Via Gamerra, 21 Fax +39 050 6143 1145
56123 Pisa - Italy john@favaro.net

www.johnfavaro.com

A Quiet Revolution in Requirements Management

John Favaro

Computer Programming, Italian Edition, May 2003

Exactly 15 years ago, an article on werewolves set the stage for a revolution in
requirements management. But nobody noticed.

Fred Brooks, already famous as the author of the Mythical Man-Month [Brooks
1987], wrote an article in the American journal Computer that destroyed the hope that
the software crisis could be resolved once and for all time. Comparing the fearful
software failures that inhabit our profession to the fearful werewolves that inhabit our
imaginations, he argued that, unlike the mythical silver bullet that can slay the
werewolf, there is no silver bullet that can slay the software monster.

The reasons he gave were as devastating as they were compelling: the very essence of
software is its complexity; its changeability; its invisibility. No magic tools would
ever be invented that could change its essential nature – and therefore, software
development would always be difficult.

The only solution, he argued convincingly, was to avoid software development – that
is, to search for ways to develop less software. He then made two concrete
suggestions to address that issue, many of which have become important paradigms
today. He suggested assembling software from reusable parts – which became the
component-oriented development so widely practiced today. And he suggested the use
of “power tools” such as spreadsheets – which became the powerful application
generators of today, ranging from environments such as Visual Basic to entire E-
Commerce application frameworks. Each of these approaches contributed to reducing
the volume of new software that had to be written for a new application – and thus a
direct attack on the essential complexity of the software werewolf.

Everybody nodded his head in agreement after reading Brooks’s article, and it became
a classic in the software engineering literature. But at the time, nobody noticed that a
third approach to slaying the software werewolf was lurking inside that article. It was
lurking inside a seemingly innocuous statement:

Much of present-day software-acquisition procedure rests upon the
assumption that one can specify a satisfactory system in advance, get bids
for its construction, have it built, and install it. I think this assumption is
fundamentally wrong. I would go a step further and assert that it is really
impossible for a client, even working with a software engineer, to specify
completely, precisely, and correctly the exact requirements of a modern
software product before trying some versions of the product.

John Favaro
CONSULENZA INFORMATICA

- 2 -

Everybody understood at the time that Brooks was talking about the need for
prototyping in order to understand the requirements of a system. But nobody (perhaps
not even Brooks) at the time realized another implication of his statement: not only
can we not know beforehand the exact requirements for a system; we cannot even
know how many requirements there are. In particular: maybe there are fewer of them.
And if there are fewer requirements, then we have to write less software – the third
attack on the software werewolf.

In spite of development techniques inspired by Brooks such as component-based
development and application generators, the software systems continued to become
larger and larger. But as the 1990s progressed, suspicions were aroused. Statistics
were published that confirmed those suspicions: much of the software was not being
used. In their paranoia to find every possible requirement, analysts were over-
specifying software systems.

A couple of years ago the Standish Group, a prominent American market research
organization, published some damning statistics and reported them to an astonished
audience at the XP2001 conference in Villasimius, Sardinia. In a study they had found
that of all the features in software systems today

• 7% are always used
• 13% are often used
• 16% are sometimes used
• 19% are rarely used
• 45% are never used

Another study by DuPont found that only 25% of a system's features were really
needed. The conclusion was inescapable: most software systems are too large because
they implement too many requirements – too many useless requirements.

So began quietly a revolution in requirements management: rather than trying to
discover the maximum set of requirements, the goal became to discover the minimum
set of requirements. “Most software systems should be only about 25% of their actual
size,” wrote Martin Fowler. “Inside every big system, there is a small system trying to
get out,” noted Chet Hendrickson.

It was not easy to overcome the prevailing way of thinking. Nervous managers
continued to specify system requirements in the old way: careful, conservative,
making sure to “find every possible requirement” before starting development. They
believed it was their only weapon to make sure that they received full value for their
money. In fact, it was their only weapon, according to the traditional “waterfall”
model of development: once the requirements phase was finished, there were no more
second chances with the waterfall model.

But gradually another model of development began to be used, an iterative model. No
longer did all requirements have to be specified and implemented beforehand. A few
– perhaps the most important or the riskiest – could be specified and implemented in a
so-called “iteration,” followed by a checkpoint. This checkpoint provided that second
chance that managers needed – a second chance to review the requirements, to
discover new ones, to discard others. Both managers and developers had the
opportunity to learn from the experience of previous iterations to understand better
not only the required features of the system, but also the relative importance of each

John Favaro
CONSULENZA INFORMATICA

- 3 -

feature. As their understanding improved, they were able to rank the requirements in
order of importance, making sure that the most important ones were implemented in
early iterations, saving the less important ones for later iterations.

The result of this ranking was that the most important requirements of the system
were implemented early, while the less important requirements were deferred to later
iterations. Sometimes, when the nature of a requirement remained unclear, it was
simply deferred to a later iteration in the hope that experience with the emerging
system would clarify its nature. Often, a surprising thing happened: it was discovered
that the requirement was not really necessary at all, and it was dropped. Experience
gained with early versions of the emerging system showed both managers and
developers that in fact often only the high-priority requirements were needed to
construct a useful system – in other words, they had discovered the minimum set of
requirements for their system.

Gradually, the relationship between managers and developers began to change. Rather
than antagonists in a game of requirements specification and implementation, they
became collaborators in requirements management, with the common goal of utilizing
the available time and resources in the best possible way. Managers could be
confident that they would see their most important requirements implemented quickly
and have feedback on the results, including that all-important “second chance” to
make changes if necessary. Developers could be confident that they would not have to
waste valuable effort in implementing and testing useless features. Rather, they could
concentrate on providing high quality on those features that were truly needed.

The quiet revolution in requirements management has begun to affect many areas of
software project management. One important example is the structure of contracts.
With the traditional way of project management, where there was “no second chance”
to modify the set of requirements after development began, rigid contracts with fixed
prices were the norm. This was perfectly understandable: it was a way for the
manager to protect himself against the many surprises that would inevitably be
revealed during development. But with the increased flexibility offered by the
iterative paradigm, it became possible to create contracts with more flexibility –
contracts with optional features. The nature of such software development contracts is
more like a modern professional services contract: rather than specify an overall fixed
set of features one time for the entire project, the contract specifies a fixed price and
time period for a certain subset of features. The developers guarantee that the agreed
features will be implemented in their entirety – that is, in a working system, not a
prototype. The contract itself is periodically renegotiated over the course of the entire
project for different sets of features.

Does this sound like a disadvantage for managers? On the contrary: as the project
progresses, the ability of managers and developers to estimate the true cost of
implementing features improves, increasing financial control over the project.
Furthermore, the manager will have the option to stop the project when he determines
that a sufficient set of features has been implemented. Often this will allow him to
spend less money than he would have had to spend with a fixed price agreement.

The quiet revolution in requirements management has taken place in what has become
known as the community of agile methods. The most famous of these methods is
known as Extreme Programming [Beck 1999].

John Favaro
CONSULENZA INFORMATICA

- 4 -

But this revolution is not destined to remain quiet. Before long, it will be heard around
the world.

REFERENCES

[Beck 1999] Beck, K., Extreme Programming Explained, Addison-Wesley,
1999

[Brooks 1987] Brooks, F., “No Silver Bullet: Essence and Accidents of Software
Engineering,” Computer Magazine, April 1987.

[Brooks 1967] Brooks, F., The Mythical Man-Month, Addison-Wesley, 1975.

