
Proceedings 4th International Conference on Software Reusability, April 1996

A Comparison of Approaches to Reuse Investment Analysis

John Favaro
Intecs Sistemi S.p.A.
Via Gereschi, 32-34

56127 Pisa - Italy
favaro@pisa.intecs.it

Abstract

Reuse economics has been the subject of vigorous
study over the past several years. Although significant
progress has been made in the areas of reuse metrics
and cost estimation, much work to date in reuse
investment analysis has not always reflected accepted
mainstream financial analysis practices. This paper
compares several approaches that have been
described in the reuse literature, points out known
problems and indicates remedies.

Keywords: Net present value, cash flow, discount
rate, internal rate of return, payback, profitability
index, book value, amortization.

1. Introduction

The field of software reuse economics tries to
bridge the gap between the technical and the financial
aspects of reuse-oriented software development. That
bridge starts from the perspective of the software
engineer, and ends with the perspective of the
corporate financial manager. Software engineers are
unfamiliar with the latter perspective, but it is essential
if software reuse is to be successfully institutionalized.
As Pfleeger [13] has stated,

It is important for software engineers to be able to
translate the language of reuse into the language of
accounting, so that reuse investment can be
compared with other possible corporate investment
alternatives.

This article considers several representative

approaches to reuse investment analysis that have been
described in the reuse literature, and reviews their
known strengths and weaknesses from the perspective
of corporate financial analysis, in an attempt to
contribute to the software engineer’s understanding of
this rather different perspective.

2. The role of investment analysis in
software reuse economics

Software reuse economics broadly encompasses
three kinds of activities:

• Reuse metrics—the measurement of reuse-related

characteristics of software;
• Cost estimation—the estimation of costs and

benefits associated with reusable software
development (often supported by reuse metrics);

• Reuse investment analysis—the evaluation of
investment decisions.

Some examples of the results of each activity

appear in the table.

Activity Examples

Reuse metrics

• Percentage of
reused code

• Number of reuses
of a component

Cost estimation

• Cost to make a
component
reusable

• Savings in
avoided work

Investment analysis

• Return on
investment for a
reusable
component

• Comparison or
ranking of
alternative
investments

Much progress has been made in reuse metrics,

and extensive work in cost estimation has also been

Proc. 4th Intl. Conf. on Software Reuse 2
Orlando, Florida, 23-26 April 1996

carried out in many places, including CSR and NEC
[12], IBM [14], SPC [16], and NATO [11]. Two recent
surveys are [5] and [15]. Reuse metrics and cost
estimation originate in the domain of software
engineering, a fact reflected in the large body of solid
work available. But the relative lack of comparably
solid work in reuse investment analysis (it is often
treated as though it were equivalent to cost estimation)
reflects a need for software engineers to become
familiar with a different domain.

2.1 The investment analysis context

Reuse investment analysis is (or should be) in the
domain of the corporate financial analyst, whose
concerns are not directly addressed by the software
engineering perspective. The first difference to keep
foremost in mind about the perspective of corporate
investment analysis—as opposed to metrics and cost
estimation—is that reuse is only one alternative for the
company. In a corporate context, investment analysis is
concerned only with the best way to allocate capital
and human resources.

Given this context, there is in fact always an
alternative to investing in a program of reuse: an
equivalent investment in the capital markets that
provides some expected yearly rate of return. This is
the fundamental yardstick against which any reuse-
oriented investment can and must be comparable.

Since capital investments are analyzed with
respect to periods of time (e.g. a “seven-year savings
bond”), reuse projects must be analyzed with the same
approach in order that comparisons be possible. An
investment analysis method’s treatment of the effects
of time is thus an essential factor.

2.2 Cost estimation and cash flow analysis

Cost estimation in reuse economics corresponds to
the task of cash flow analysis in corporate finance. A
candidate reuse project has potential cash flows which
could be positive (such as savings from avoided work)
or negative (such as work to generalize a component).
In [18] these are characterized as “benefits” and
“costs.” Although progress is rapidly being made in
techniques for reuse-oriented cost estimation, it is and
will remain a very challenging and difficult task—as
indeed it is in all of corporate finance. Techniques for
quantifying economic benefits that are of particular
interest in reuse, such as decreased time-to-market, are
emerging only now [8]. But agreement is being reached
among many that working time (e.g. “engineering
hours” [7]) expressed in dollar amounts is an especially

useful and realistic way of capturing economic benefits
and costs associated with a reuse program.
(Considerable work has also been done in the
measuring of non-economic benefits, but these are out
of the scope of this paper.)

Cash flows are forecast over a suitable time
horizon which could be anywhere from one year to
infinity, depending on the particular circumstances. It
is here that special concerns in the software reuse
field—such as the rapid obsolescence of new
technology—should be taken into consideration. For
example, in a rapidly changing domain, the time
horizon might reasonably be limited to three or four
years. It is important that the time horizon be “neutral”
in the sense that it reflects only the estimated
meaningful life of the project’s cash flows, not desired
characteristics such as “early returns.”

The output of cost estimation typically is
represented in tabular form as in the following:

C0 -5000

C1 +2000

C2 +3000

C3 +6000

This example shows a negative cash flow C0 (the

“initial investment”) of -5000 dollars followed by
positive forecasts for three more years.

2.3. The line between cost estimation and
investment analysis

In corporate finance, the estimation of
costs/benefits, in the form of cash flows, is considered
to be an activity prior to investment analysis. That is, it
is essential that investment analysis should be based
only on the cash flows yielded by cost estimation as
shown above. This clear demarcation allows a critical
requirement to be fulfilled: the ability to compare
arbitrarily different kinds of alternatives (e.g. software
reuse versus sheep farming). In the reuse literature, this
demarcation is not always clearly visible. Thomas [19]
relates this phenomenon to the Goal-Question-Metric
(GQM) paradigm [20], which observes that
measurement without the guidance of clear, well-
understood goals tends to be ill-focused. (We return to
this problem in Section 5 in the context of value-based
management.) Until software engineers become
familiar with the purpose and needs of reuse
investment analysis, the proper focus of measurement
and cost estimation activities will remain elusive.

Proc. 4th Intl. Conf. on Software Reuse 3
Orlando, Florida, 23-26 April 1996

3. Comparison of approaches

With the line clearly drawn between cost
estimation (“cash flow analysis”) and investment
analysis, we are now in a position to compare
investment analysis approaches. There is much
agreement in the world of corporate financial analysis
on the characteristics that an investment analysis
method should exhibit in order to be useful and
reliable:

• it should depend as much as possible only on

forecast cash flows, and not on subjective and
arbitrary factors such as accounting practices or
managers’ instincts;

• it should have a quantifiable acceptance rule (or
criterion) to guide the investment decision;

• it should be suitable for comparing and ranking
candidate projects, both singly and in
combinations;

• it should be able to deal with arbitrarily large or
small projects;

• it should be able to handle projects of arbitrarily
long or short duration.

In the remaining sections, several different

approaches that have been described in the literature
will be examined in the light of this list of desirable
characteristics.

3.1 Net present value (NPV)

The net present value (NPV) approach has been
mentioned in several sources in the literature, but has
been used most extensively in work at Hewlett-
Packard. In [7], the application of the NPV approach to
evaluate two multi-year corporate reuse projects is
described. At the component level, the use of the
approach is illustrated to rank components, either in
terms of priority or as alternatives. In [8], techniques
are also described to account for time-to-market and
risk in a reuse context. That work is firmly grounded in
accepted principles of corporate finance and forms a
point of departure for the following discussion.

Most people are comfortable in dealing with
money amounts from the past in terms of today’s
dollars. (“That house cost 15000 dollars in 1960,
corresponding to 130000 dollars today.”) Since
investment planning deals with future rather than past
money amounts, the same exercise is possible in
reverse. (“In ten years this will be only worth half as

much as today.”) This leads directly to the concept of
the present value of an investment—the value today of
a predicted future cash flow. The discounted cash flow
formula for present value is defined as

PV = Ct / (1 + kt)t

where t ranges over all future time periods under
consideration, and

Ct = future cash flow in period t
kt = discount rate in period t

The net present value is calculated by subtracting

the original investment from the present value (or
equivalently, adding the initial investment as a negative
value):

NPV = C0 + PV

The acceptance rule is simple: invest in a project

if its net present value is greater than zero.
The discount rate is also known as the opportunity

cost of the project, because it corresponds to the rate of
return expected from an equivalent investment on the
capital markets—thus representing the cost of taking
the “opportunity” to invest in the project. (As
mentioned earlier, this is always an alternative.) The
opportunity cost is a figure to be estimated by project
planners (although it is often done at the corporate
level). Furthermore, the discount rate could be different
in different periods (e.g. short-term versus long-term
rates)—although normally a single rate is assumed over
the life of the project.

As an application of the NPV approach, consider
the following scenario. A company analyst wishes to
evaluate two alternative ways to create a product line:

• Base it on procured Commercial-Off-The-Shelf

(COTS) software. There is a large initial
procurement cost, with subsequent high returns
(due to avoided work), but the COTS software will
be outdated and must be replaced with another
purchase after three years;

• Have an in-house program of reuse in order to
create and maintain the product line, with
considerable up-front costs, but much higher
returns when the program is up and running.

Here the cash flow analysis will include cost-of-

product issues (e.g. the COTS solution may require
payment of royalty for every product sold). Suppose

Proc. 4th Intl. Conf. on Software Reuse 4
Orlando, Florida, 23-26 April 1996

that the forecast cash flows over four years from his
own and his software engineers’ cost estimation
activities yields the following:

Cash Flows COTS Reuse
C0 -9000 -4000

C1 5000 -2000

C2 6000 2000

C3 7000 4500

C4 -4000 6000

all Ci 5000 6500

NPV at 15% 2200 2162

Here the COTS-based scenario has a slightly

higher NPV and therefore is preferred. It is worthwhile
noting a few points about even this hypothetical case:

• the COTS approach and the reuse approach are

quite different technically, yet they can be
compared directly in this way, based solely on their
predicted cash flows;

• the two cash flow patterns are very different,
illustrating that any arbitrary pattern is possible;

• the NPV approach is sensitive to the timing of cash
flows. Note, for example, that the sum of the cash
flows is higher for the reuse-based scenario—yet
the overall NPV shows the penalizing effect of time
on the value of later returns [8]. (“Time is money.”)

The fact that all NPV values are expressed in the

same units of today’s dollars also implies that they are
sensitive to the size or scale of a project: large or small
returns are directly reflected in the NPV quantity.

Furthermore, NPV possesses the important quality
of being additive. That is, for project P and project Q,

NPVP and Q = NPVP + NPVQ

which means that combinations of projects can be
evaluated. For example, consider a proposed project to
construct a reusable inference engine (IE) module
equipped with a modern graphical user interface
(GUI). An analysis may reveal an NPV of +3200
dollars, a very encouraging prospect. But a finer,
separate analysis of the inference engine and the GUI
subcomponents may reveal that NPVIE equals +5000
dollars, but NPVGUI equals -1800 dollars. That is, the
negative value of the GUI subcomponent is
“camouflaged” by the high positive value of the

inference engine subcomponent. In this case, it is
preferable to develop only the inference engine
subcomponent.

In NPV analysis, risk is accounted for both in the
cost of capital and cash flow forecasts. In practice,
NPV analysis is generally not carried out as a point
estimation (yielding a single number) but as a mean
estimation, accompanied by various forms of risk
analysis (e.g. sensitivity analysis, scenario analysis, and
decision analysis).

In summary, the net present value approach
exhibits the following important characteristics for
reuse investment analysis:

• It incorporates the effects of time on the value of a

project, permitting realistic comparison with
alternative capital investment possibilities;

• It does not depend on arbitrary factors such as a
company’s bookkeeping practices, managers’
instincts, or the current business climate—only on
forecast cash flows and the opportunity cost of
capital for a proposed project.

• Since values are measure in units of today’s dollars,
they are additive, can be ranked, and are sensitive
to scale. Alternatives large and small, reuse-related
or non-reuse related, can be compared and
combined.

In the following, we examine the behavior of

other proposed methods with respect to these
characteristics.

3.2 Payback

Payback—the time or number of uses required to
recover the cost of an investment—has appeared more
often in the reuse literature than any other approach. In
work at the Software Productivity Consortium [1] [16]
the payoff threshold value for a component is defined
as

N0 = E / (1-b)

where

E = relative cost of developing a component

for reuse
b = relative cost of integrating the

component
N0 = number of times a component must be

used before its cost is recovered

Proc. 4th Intl. Conf. on Software Reuse 5
Orlando, Florida, 23-26 April 1996

For example, cost estimation was carried out in
[4] for a set of reusable components developed for the
user interface in a shipboard data handling project. The
component set included both domain-specific
“vertical” components (e.g. a forms handler) and
domain-independent “horizontal” components (e.g. a
directed-graph manager). The payback for one large
“vertical” component was calculated to be N0 = 13
uses, whereas for a small “horizontal” component the
payback was only N0 = 2 uses. Generally, the
acceptance rule applied to payback is that projects
must recover their costs within a certain cutoff date
(e.g. “within the first year”) in order to be accepted.

The idea of “payback,” “break-even,” or “cost
recovery” is intuitively very appealing; but for
investment analysis, this approach presents several
problems. First, the choice of cutoff date is generally
arbitrary and subjective. Secondly, payback is not
sensitive to patterns of cash flows—in particular, it
ignores all cash flows after the cutoff date. And when
cash flows are not discounted (usually the case for
payback) equal weight is given to all cash flows.
Consider a scenario in which there is a choice between
(a) hiring a programmer who produces benefits at an
even rate; (b) making an equal investment in some
components with slightly delayed returns; (c) making a
large investment in a reuse program with larger
delayed returns.

Cash
Flows

Choice
(a)

Choice
(b)

 Choice
(c)

C0 -2000 -2000 -4000

C1 1000 500 -1500

C2 1000 1500 5500

C3 1000 1000 6000

Payback 2 years 2 years 2 years
NPV at
15%

283 226 2799

As the table indicates, all of the choices produce a

payback within two years. But choice (a) produces
earlier returns than (b) and thus has a slight advantage;
and choice (c) produces much higher returns in the last
period, resulting in a far greater value. This is an
example of the problem of scale: the true value of the
project is not taken into account by the payback
approach. The problem of scale is also exhibited in the
example cited from [4]: the vertical component with a
payoff after 13 uses was on a far larger scale than the
simple horizontal component with its payoff after only

2 uses. Is the small investment with rapid payback for
the horizontal component really better than the large
investment with delayed payback for the vertical
component? For purposes of the investment decision,
those two payback numbers are effectively
meaningless—only a discounted cash flow analysis
would allow a direct, meaningful comparison.

Finally, the example also shows that the choice of
cutoff period affects whether short-lived or long-lived
projects are accepted—an arbitrary and error-prone
approach, with a tendency to penalize forward-looking
reuse programs.

In summary, payoff is a useful way to
communicate an idea about the worthiness of a project.
It is an intuitively appealing notion, and is easy to
grasp by managers not involved in the details of cost
estimation. But in fact it is an ad hoc approach, which
is useful for communicating the results of investment
analysis (as done in [7]), but not for the analysis itself.

3.3 Average return on book value

The reuse literature has long encouraged a view of
software as a capital asset [17], to be treated like
tangible assets such as machinery. The debate on
whether software development should be considered as
capital investment in real assets or salary-related
operating expenses is likely to continue for some time.

This issue relates to the concept of amortization
as proposed by CSR and NEC [12]. In this approach,
an amortization schedule for investment for reusable
work products is agreed upon, and deducted as
appropriate from future cash flows from those work
products.

This approach corresponds to the book rate of
return technique in corporate accounting. The book
rate of return of an investment is calculated by dividing
the average profits from predicted future cash flows
(minus amortization costs) by the average net book
value of the investment. The acceptance rule is that a
project is accepted if its book rate of return meets some
target set by the analyst, such as the company’s current
book rate of return or that of the industry as a whole—
for example, in [16], a “minimum acceptable return” of
20% is described for a hypothetical project under
consideration.

As an illustration, consider now a $20000
investment in a four-year reusable workproduct
development program, for which a straightforward
constant amortization schedule ($5000 per year) is
agreed:

Proc. 4th Intl. Conf. on Software Reuse 6
Orlando, Florida, 23-26 April 1996

Year Gross
Book

Value of
Investme

nt

Cumulative
amortization

Net book
value of
investme

nt

Year 0 20000 0 20000
Year 1 20000 5000 15000
Year 2 20000 10000 10000
Year 3 20000 15000 5000
Year 4 20000 20000 0

Thus, the average net book value of the

investment in work products is 50000/5 = 10000
dollars.

Now consider some possible scenarios for cash
flows on this investment, including “early,” “middle,”
and “late” returns. The numbers in parentheses
represent the net cash flows after amortization:

Year Early Middle Late
Year 1 13000

(8000)
10000
(5000)

7000
(2000)

Year 2 11000
(6000)

10000
(5000)

9000
(4000)

Year 3 9000
(4000)

10000
(5000)

11000
(6000)

Year 4 7000
(2000)

10000
(5000)

13000
(8000)

All three scenarios produce an average net income

of 5000 dollars. Therefore, the average book rate of
return of all three scenarios is 5000/10000 = 50
percent. Yet clearly the “early returns” scenario is
preferable. This approach is entirely insensitive to the
variation in cash flow patterns.

Even worse, the calculation is dependent on the
choice of amortization schedule, which might be linear,
accelerated, or some other choice made by the
accountant—and is also constrained by tax laws.
Furthermore, amortization is only applied to capital
investment, not operating expenses. A consistent policy
must be developed for deciding which investment in
reusable workproducts is to be considered capital
investment (or capitalized by the accountant) and
which is to be considered as operating expenses (or
expensed). Recalling the introductory remarks of this
section, this is likely to be a difficult and subjective
task—and in any case is likely to be the task of the

accountant. (In this regard, it is also worth noting that
there is a strong traditional tendency by accountants to
expense rather than capitalize, due to tax
considerations [9].)

Finally, the choice of target book rate of return is
arbitrary and subjective—how is it decided that 20% is
a “minimum acceptable” rate of return?

Or the choice may depend on the company’s
current rate of return. But only the merits of the project
under evaluation should be taken into consideration—a
company that is in financial trouble, with a low current
book rate of return, may get even more deeply into
trouble by setting its target threshold too low.

In summary, this approach is vulnerable to
accounting distortions and too many other subjective
factors to be satisfactory.

3.4 Internal rate of return (IRR)

Work carried out at IBM [14] introduces the
internal rate of return (IRR) approach as the most
common way of expressing corporate return on
investment. It goes on to note that IRR is related to
NPV, and illustrates both figures calculated side-by-
side in a cash flow scenario.

IRR is a way of defining the rate of return of a
long-lived asset. IRR and NPV are related as follows:
IRR is the discount rate which makes NPV equal to
zero. That is,

C0 = Ct / (1+IRR)t

for all time periods t under consideration. The
acceptance rule says to accept a project if its IRR is
greater than the opportunity cost of the project. Since
they are both based on discounted cash flows, IRR and
NPV can in fact both be used to produce equivalent
results. However, proper use of IRR is more difficult,
and its calculation is subject to several disturbing
anomalies.

While the opportunity cost is estimated by project
planners, the IRR is calculated from forecast cash
flows—that is, it is a derived figure, and can be
undermined solely by certain patterns of cash flows in
a project. For example, in [14], after the initial
investment, the cash flows in the illustrated project
were all positive. This need not be the case, of course.
Alternating cycles of component development, reuse,
maintenance, etc., could produce alternating positive
and negative cash flows, as in the following:

Proc. 4th Intl. Conf. on Software Reuse 7
Orlando, Florida, 23-26 April 1996

C0 +1000

C1 -3600

C2 +4320

C3 -1728

IRR in percent +20
NPV at 10 percent -0.75

This scenario has an IRR greater than the cost of

capital, but a negative NPV. Thus the IRR acceptance
rule breaks down here and leads to an incorrect
decision.

The problem of alternating cash flows leads to
other technical anomalies in the calculation of IRR, as
in:

C0 -4000

C1 +25000

C2 -25000

IRR in percent both 25 and 400
NPV at 10 percent -1934

This cash flow scenario (from [2]) produces two

IRR values (due to multiple sign changes).
Furthermore, the following scenario yields no IRR at
all:

C0 +1000

C1 -3000

C2 +2500

IRR in percent none
NPV at 10 percent +339

An investment analysis method must be flexible

enough to handle all cash flow scenarios. As seen
above, the IRR approach is problematic in this respect.

IRR also exhibits problems with regard to the
scale of projects. Consider again a scenario similar to
that in [4]: A decision must be made whether to pursue
a strategy of developing small low-level horizontal
components or large vertical components. The forecast
cash flows over two years are as follows:

 Horizontal
Component

Vertical
Component

C0 -100 -10000

C1 +200 +15000

IRR (percent) 100 50
NPV at 10% 82 3636

The IRR of the small horizontal component is

double that of the large vertical component—but the
NPV of the vertical component dwarfs that of the
horizontal component, and thus it is clearly the
preferred choice. IRR was unable to capture and
express the differences in scale of the two projects. The
IRR could be used properly in this case by constructing
an awkward scheme of incremental investments—but
NPV is much more straightforward.

Finally, it should be noted that since the IRR is a
single calculated value, it cannot model multiple
discount rates (for example, when short-term interest
rates are different from long-term interest rates).

In summary, IRR is subject to too many anomalies
and constraints to make it a preferred approach to reuse
investment analysis.

3.5 Profitability Index (PI)

The idea of examining the ratio of “benefits” to
“costs” is intuitively appealing, and appears in
numerous variations throughout the reuse literature,
such as [16], where “return on investment” (ROI) is
defined as

ROI = Savings/Investment - 100

and [18], where the “quality of investment” (Q) is
defined as the ratio of “reuse benefits” (B) to “reuse
investments” (R), or Q = B/R.

This idea appears in another variation in the
NATO reuse standards [11], where two measures are
presented for comparing reusable software
components, as a way of setting priorities for allocation
of scarce resources. The first is the cumulative
discounted cash flow (CDCF), defined as the sum of
the annual discounted cash flows minus the original
investment (called accession cost in the text) :

CDCF= Ci - C0

where

Ci = discounted cash flow in year i

Proc. 4th Intl. Conf. on Software Reuse 8
Orlando, Florida, 23-26 April 1996

C0 = original investment.

As defined there, CDCF is none other than net

present value. (This points up the problem of
conflicting nomenclature in the literature.) The NATO
text then presents as an alternative comparison measure
the profitability index , which it defines as CDCF/C0 =
NPV/C0.

This definition is different from the one used in
mainstream corporate finance, where the profitability
index (also known as the benefit-cost ratio) is defined
as the present value (rather than the net present value
as in the NATO text) of future cash flows divided by
the initial investment:

PI = PV/C0

The acceptance rule for PI states that a project

with a profitability index greater than one should be
accepted.

But once again, problems arise for projects of
different scales. Consider the same scenario as
presented in the section on IRR:

 Horizontal

Component
Vertical

Component
C0 -100 -10000

C1 +200 +15000

PI 1.82 1.36
NPV at 10% 82 3636

Here, too, a misleading result is obtained: the

profitability index for the horizontal component is
higher than for the vertical component, in spite of a
much lower net present value. As for the case of IRR,
the correct result can be obtained with PI by the use of
incremental cash flows. But it is an awkward and error-
prone exercise, and ultimately unnecessary. In
summary, the profitability index is misleading on
problems of scale, is not additive, and exhibits no
advantages over net present value. As for payback, the
profitability index or similar expressions for “return on
investment” are primarily useful for communicating the
results of investment analysis (e.g. to upper
management) in a less rigorous and more intuitively
immediate manner.

4. Summary and conclusions

A summary of reviewed approaches and
associated issues is shown in the following table.

Approach/Rule Issues
Net Present Value
(NPV)

Rule: Accept if
NPV > 0

• Most acceptable,
realistic approach

• Values are additive,
allowing project
combinations to be
evaluated

• Takes differences of
scale into
consideration

Payback

Rule: Accept if
payback within some
specified target time
period

• Usually does not
discount cash flows

• Arbitrary cutoff dates
for payback

• Ignores flows after
cutoff date

• Not sensitive to scale
Average Return on
Book Value
Rule: Accept if
predicted rate of return
greater than some
target

• Insensitive to cash
flow patterns

• Dependent on
accounting practices

• Arbitrary targets

Internal Rate of
Return (IRR)

Rule: Accept if IRR
greater than the
opportunity cost of
project

• Uses discounted cash
flows

• No direct economic
significance

• Subject to
mathematical
anomalies

• Not sensitive to scale
Profitability Index
(PI)

Rule: Accept if PI > 1

• Conceptually closest
to NPV

• Values not additive
• Not sensitive to scale

In the field of software reuse economics, much

progress has been reported in metrics and cost
estimation, whose techniques arise directly from the
software engineering domain. Less progress is evident
in investment analysis, partly because mainstream
business practices have not yet sufficiently been taken
into consideration by software engineers unfamiliar
with them. Intuitively appealing notions such as
“break-even point,” “payback,” and “return on
investment” are often used without consideration for
known shortcomings.

Proc. 4th Intl. Conf. on Software Reuse 9
Orlando, Florida, 23-26 April 1996

The issues discussed in this article have all been
dealt with in mainstream corporate finance [2], whose
techniques are directly applicable to reuse investment
analysis. Related work on software investments can
also be found in textbooks such as [21], [22].

To return to the statement by Pfleeger in the
beginning of this text, it is desirable for software
engineers to become conversant with these issues so
that well-grounded, persuasive business cases can be
built for reuse programs.

5. Future directions: the broader context
of value-based reuse management

The broader context of this discussion is
embodied in the principles of “value-based
management” [10], which seeks to make the governing
objective of a company clear and consequential.
Specifically, it defines the maximization of economic
value as the most desirable governing objective, and
one of its fundamental tools is the discounted cash flow
analysis method of the NPV approach.

The principles of value-based management are
particularly relevant to management for reuse, because
they can provide the missing focus (as noted in Section
2) on the true value-creating factors, rather than more
subjective criteria such as market share or even quality.
They also yield some surprising alternative insights on
previous ideas. For example, the problems of
comparing and ranking alternatives discussed in this
article are based on the concept of “scarce resources,”
also known as capital rationing. This reflects the
implicit assumption also seen in the reuse literature that
choices are forced by limited capital budgets. (“Capital
is limited but free of cost.”) But value-based
management challenges the idea that capital need be
considered to be scarce—rather, it can be obtained, at a
price, on the capital markets. (“Capital is unlimited but
expensive.”) Such alternative perspectives hint at ways
to implement innovative proposals such as the reuse
bank suggested in [12].

Finally, value-based management yields useful
insights about how to organize for reuse. For example,
in the reuse literature it is often suggested to spread out
costs of component development across business units,
e.g. in a centralized group. But value-based
management encourages the full allocation of costs to
business units to yield maximum clarity in the
associated cash flows. Separate departments for
component production are thus regarded critically. The
effects of this on reuse organization have yet to be
explored fully.

Full value-based reuse management could offer a
way to link the chain of all activities in software reuse
economics, rendering them clear, focused, and
consequential. But first, the weakest link must be
strengthened. The essential activity of reuse investment
analysis is the proper valuation of a project as an
investment of expensive corporate resources—both
capital and talent. More case studies need to appear in
the literature [7] in which different projects are
compared and ranked according to a systematic and
coherent approach that is accepted in the mainstream
corporate finance world.

Acknowledgements

This paper benefited from work at the European
Software Institute [3], and from discussions with W.
Lim and I. Thomas. Special thanks for careful review
of the material on corporate financial analysis are due
to Kenneth Richard and Paul Frederick of Marakon
Associates (London)—who also point out the
complementary role that software engineers have to
play in educating financial analysts and managers in
the proper application of their financial techniques to
software reuse investments.

6. References

[1] B. Barnes et. al., “A Framework and Economic
Foundation for Software Reuse,” Proc.
Workshop on Software Reusability and
Maintainability, October 1987.

[2] R. Brealey and S. Myers, Principles of
Corporate Finance, McGraw-Hill, New York,
1981.

[3] European Software Institute, “Technical Report
on Reuse,” Bilbao, May 1995.

[4] J. Favaro, “What Price Reusability?,” Proc.
First Symp. on Environments and Tools for
Ada, New York, 1990, pp. 115-124.

[5] W. Frakes and C. Terry, “Software Reuse and
Reusability Metrics and Models,” ACM
Computing Surveys, 1995 (to appear).

[6] J. E. Gaffney and T. A. Durek, “Software
Reuse—Key to Enhanced Productivity; Some
Quantitative Models,” Information and
Software Technology, 31:5, June 1989.

[7] W. Lim, “Effects of Reuse on Quality,
Productivity, and Economics,” IEEE Software,
Sept. 1994, pp. 23-30.

[8] R. Malan and K. Wentzel, “Economics of
Software Reuse Revisited,” Proc. 3rd Irvine
Software Symposium, Irvine, 1993.

[9] Marakon Associates, Private Communication,
1995.

[10] J. M. McTaggart, P.W. Kontes, M.C. Mankins,
The Value Imperative, The Free Press, New
York, 1994.

Proc. 4th Intl. Conf. on Software Reuse 10
Orlando, Florida, 23-26 April 1996

[11] NATO, “Standard for Management of a
Reusable Software Component Library,” NATO
Communications and Information Systems
Agency, August 1991.

[12] S. L. Pfleeger and T. B. Bollinger, “The
economics of reuse: new approaches to
modelling and assessing cost,” Information and
Software Technology, Vol. 36 (8), 1994, pp.
475-484.

[13] S. L. Pfleeger, “Measuring Reuse: A Cautionary
Tale,” submitted for publication, 1995.

[14] J. S. Poulin and J.M. Caruso, “A Reuse Metrics
and Return on Investment Model,” Proc. 2nd.
Int. Workshop on Software Reusability, IEEE
Computer Society Press (May 1993).

[15] J. S. Poulin, “Measuring Software Reusability,”
Proc. 3rd. Int. Conference on Software
Reusability, IEEE Computer Society Press
(November 1994).

[16] SPC, “Reuse Adoption Guidebook,” Report
SPC-92051-CMC, Version 01.00.03 (Nov.
1992).

[17] P. Wegner, “Capital-Intensive Software
Technology,” IEEE Software 1(3), July 1984.

[18] B. Barnes and T. Bollinger, “Making Software
Reuse Cost Effective,” IEEE Software (1 1991),
pp. 13-24.

[19] I. Thomas, Private Communication, 1995.
[20] V. Basili and D. Weiss, “A methodology for

collecting valid software engineering data,”
IEEE Transactions on Software Engineering,
SE-10 (3), pp. 728-738, Nov. 1984.

[21] B. Boehm, Software Engineering Economics,
Prentice-Hall, 1981.

[22] L. Putnam and W. Myers, Measures for
Excellence: reliable software on time, within
budget, Prentice Hall, 1992.

