
1 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

competitive advantage to simply “some-
thing good.” Consequently, the software
community looks upon ROI with increas-
ing suspicion as a vague and slippery gim-

mick used chiefly to make the sales pitch
(invariably unsubstantiated) for a par-
ticular product or initiative.

On the contrary, ROI analysis aims
to achieve clarity in the decision-mak-
ing process. For example, from a tech-
nical perspective, we generally want to

increase a software product’s quality be-
cause fixing existing software takes valu-

able time away from developing new soft-
ware. But how much investment in software
quality is desirable? When should we invest,
and where?

A robust economic and strategic analysis
can help answer these questions. If a firm’s
strategy to achieve competitive advantage is
based on higher customer satisfaction and
corresponding higher prices, then it can ar-
gue for a certain level and type of invest-
ment in quality. A competitive strategy
based on lower production costs and lower

focus
Return on Investment

I
f the software engineering community were to hold a contest to select
its most overworked, misused, and abused acronym, it’s quite possible
the winner wouldn’t be AI, RAD, or even OO but the unassuming lit-
tle term ROI. Ubiquitous and reckless promotion by vendors, con-

sultants, and marketing gurus has diluted the expression return on invest-
ment into an umbrella term that can mean anything from profits to

guest editors’ introduction

Hakan Erdogmus, National Research Council, Canada

John Favaro, Consulenza Informatica, Italy

Wolfgang Strigel, Software Productivity Center, Canada

prices might lead to targeting the investment
in quality to specific parts of the software
product or service. In this way, the value of
increasing software quality is framed in terms
that senior management can understand and
use to make informed decisions. But even
technical personnel can benefit from familiar-
ity with this type of analysis. From the new
agile development methodologies that explic-
itly incorporate notions of customer value to
the latest asset-based repositories such as
product lines, it’s clear that the software in-
dustry currently views few initiatives from a
purely technical perspective.

Learning the business
It’s not the widespread promotion of ROI

in the software industry that is misplaced, but
the use of a single, narrowly defined concept
as a proxy for an entire hierarchy of activities
concerned with financial and strategic analy-
sis. These activities fall essentially into four
levels, each driving the next:

� Business strategy: Selecting markets in
which to participate and formulating
strategies for competing in those markets

� Valuation: Analyzing the economic value
of projects executed in the pursuit of that
business strategy

� Cost-benefit analysis: Translating meas-
ured or estimated data into monetary
terms (for example, labor costs), forming
the basis for valuation

� Metrics: Measuring the parameters (such
as programmer time) that form the basis
for cost and benefit analysis

Not surprisingly, the software engineering
community has done an enormous amount
of work in the latter two areas while effec-
tively neglecting the first two. We feel com-
fortable with gathering and interpreting met-
rics, which are naturally “close to the code,”
whereas valuation and competitive strategy
seem to belong to the unfamiliar realm of
corporate finance. Unfortunately, our educa-
tional system neglects to expose software en-
gineers to business fundamentals and doesn’t
instill a good understanding of the role of
technical projects in the context of overall
business imperatives. So, we’re often not
well equipped to elaborate the business case
behind our technical vision.

Yet the fundamentals of financial and
strategic analysis are within any software en-
gineering professional’s grasp. Few disciplines
offer better preparation—software engineers
can understand and apply abstract concepts,
can think clearly and logically, and last but
not least, have computational skills. It’s ironic
that the legions of programmers constructing
the financial and strategic analysis tools that
businesses around the world use don’t apply
these same tools to their own products and
processes.

Analyzing and creating economic
value

It’s equally ironic that ROI has acquired
the reputation of being a vague and slippery
marketing device in the software community,
because the definition of ROI used in finance
(and in this special issue) is anything but—it’s
the ratio of net benefits to costs, or

(Benefits – Costs)/Costs.

The ROI calculation organizes a project’s
costs and benefits (“cash flows” in finance
jargon) into a useful profitability measure.
But this measure alone doesn’t capture two
essential ingredients of any serious economic
analysis: time and risk. Without the dimen-
sion of time, we can’t compare the economics
of short-lived versus long-lived projects; with-
out accounting for risk, we can’t compare a
project with its riskier competitor. The rigor-
ous treatment of time and risk brings an
analysis firmly into the domain of valuation.

At the heart of modern valuation is the
only logical and universally accepted defini-
tion of economic value: net present value.
NPV analysis levels the playing field for
costs and benefits occurring near and far in
the future by aligning them all to a single
time frame in the present. Is early, one-time
delivery preferable to a long-term subscrip-
tion offering? Should I pour my resources
into that one-time, quick-payback project
now or invest in a more ambitious program
of systematic reuse? Valuation can help
make sense of the numbers, giving proper
weight to costs and benefits occurring at dif-
ferent points in time.

By explicitly modeling the time value of
money, NPV introduces another fundamental
concept into valuation. The return generated

M a y / J u n e 2 0 0 4 I E E E S O F T W A R E 1 9

2 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Basic financial and economic concepts underlying ROI ap-
pear in introductory corporate finance books—see, for exam-
ple, relevant chapters on capital budgeting and risk and return
in Fundamentals of Corporate Finance.1 An Annals of Soft-
ware Engineering article provides a concise introduction to
these concepts and the fundamentals of option pricing theory
in the software engineering context.2 Michael Porter wrote the
standard text on competitive strategy.3

Barry Boehm wrote a comprehensive reference on soft-
ware engineering economics,4 which, along with the classic
book on cost estimation,5 provides a solid foundation for un-
derstanding ROI in the software context. For an up-to-date
perspective on ROI in the software industry, read Boehm’s ar-
ticle on value-based software engineering,6 which defines a
high-level, multistakeholder, multifacet framework for captur-
ing value in the full spectrum of software engineering activi-
ties, from requirements engineering to risk management.

Donald Reifer’s book is a high-level practitioner resource
for software business case analysis.7 It takes a pragmatic ap-
proach to using numbers to justify software-intensive projects
and contains many examples. As such, it complements this
issue’s two valuation articles.

An excellent reference on ROI for software quality is
Khaled El-Emam’s book,8 which includes several ROI calcula-
tion examples for inspection, risk assessment, test-driven de-
velopment, and defect detection. It also provides interna-
tional benchmarks for these quality practices. Capers Jones’
book is another comprehensive account of industry bench-
marks for software process improvement and associated
practices.9 For a shorter account, refer to Steve McConnell’s
summary of ROI benchmarks for process improvement,10

which complements the benchmarks provided in this issue’s
“Measuring the ROI of Software Process Improvement.”

Most existing literature on software engineering economics
focuses on process or business decisions, so works that ad-
dress technical decisions are scarce. Representative resources
in the latter category include “Software Design as an Invest-
ment Activity”11 and Evaluating Software Architectures,12 both
of which provide theoretical and practical treatments that tackle
ROI in design and architecture decisions.

For the research-oriented, we suggest the ICSE (Interna-
tional Conference on Software Engineering) roadmap docu-
ment by Barry Boehm and Kevin Sullivan.13 This reference
provides an agenda of research topics pertaining to ROI in
the software engineering context.

Interest in risk management has been increasing in re-
sponse to the technology sector’s growing volatility. From an
ROI perspective, of particular interest is an approach re-
ferred to as real options. This approach reconciles financial
and strategic viewpoints to support decision making in the
face of uncertainty—in particular, for valuing flexibility. Re-

cent applications of this approach in the software engineer-
ing context include the assessment of value propositions for
agile software development,14 valuation of staged software
development projects subject to multiple sources of uncer-
tainty,15 and the quantification of the strategic benefits of
platform investments.16 The last reference is of particular in-
terest because it complements the ROI approach proposed in
this issue’s “Calculating ROI for Software Product Lines.”

Finally, the Economics-Driven Software Engineering Re-
search workshops also constitute a valuable resource (www.
edser.org). EDSER proceedings contain many short position
papers on using value-based approaches in a variety of soft-
ware engineering problems ranging from technical decisions
to business and process decisions. We encourage interested
readers to attend the EDSER workshops, which have been
collocated with ICSE since 1998.

References
1. S.A. Ross et al., Fundamentals of Corporate Finance, Times Mirror Profes-

sional Publishing, 1996.

2. J.M. Favaro, K.R. Favaro, and P.F. Favaro, “Value Based Software Reuse In-
vestment,” Annals of Software Eng., vol. 5, 1998, pp. 5–52.

3. M.E. Porter, Competitive Strategy, The Free Press, 1980.

4. B. Boehm, Software Engineering Economics, Prentice Hall, 1981.

5. B. Boehm et al., Software Cost Estimation with Cocomo II, Prentice Hall,
2000.

6. B. Boehm, “Value-Based Software Engineering,” Software Eng. Notes, vol.
28, no. 2, 2003.

7. D. Reifer, Making the Software Business Case, Addison-Wesley, 2002.

8. K. El-Emam, The ROI from Software Quality: An Executive Briefing, Ottawa
Software Quality Assoc., 2004.

9. C. Jones, Software Assessments, Benchmarks, and Best Practices, Addison-
Wesley, 2002.

10. S. McConnell, “Business Case for Better Software Practices,” Professional
Software Development, Addison-Wesley, 2004, pp. 111–122.

11. K.J. Sullivan et al., “Software Design as an Investment Activity: A Real Op-
tions Perspective,” Real Options and Business Strategy: Applications to De-
cision Making, L. Trigeorgis, ed., Risk Books, 1999.

12. P. Clements, R. Kazman, and M. Klein, Evaluating Software Architectures:
Methods and Case Studies, Addison-Wesley, 2002.

13. B. Boehm and K.J. Sullivan, “Software Engineering Economics: A Road-
map,” The Future of Software Engineering, A. Finkelstein, ed., ACM Press,
2000.

14. H. Erdogmus and J. Favaro, “Keep Your Options Open: Extreme Program-
ming and the Economics of Flexibility,” Extreme Programming Perspectives,
L. Williams et al., eds., Addison-Wesley, 2002, pp. 503–552.

15. H. Erdogmus, “Valuation of Learning Options in Software Development Un-
der Private and Market Risk,” The Eng. Economist, vol. 47, no. 3, 2002,
pp. 304–353.

16. J.M. Favaro and K.R. Favaro, “Strategic Analysis of Application Framework
Investments,” Building Application Frameworks: Object Oriented Founda-
tions of Framework Design, M. Fayad and R. Johnson, eds., John Wiley &
Sons, 1999, pp. 567–597.

Further Reading and Resources

by money earning interest over time becomes
a baseline ROI against which we can compare
alternative uses for that money. This opportu-
nity cost of money effectively represents a
hurdle that a competing investment opportu-
nity must overcome to be justifiable (other-
wise, you might as well put your money in the
bank). The opportunity cost of money and its
role in creating or destroying economic value
is the core principle driving the best manage-
ment practices available today.

However, time isn’t the only factor deter-
mining the opportunity cost of money. If a
software development project promises the
same ROI as money sitting in the bank, then
an investor would insist on a discount for tak-
ing the additional risk—the higher the per-
ceived risk, the higher the demanded dis-
count. Treating risk in modern valuation goes
far beyond the intuitive notions underlying
typical project-level risk management pro-
grams in the software industry. Valuation ex-
plicitly quantifies the level of reward that an
investor may demand for taking on risk. Fur-
thermore, it does this while reconciling a proj-
ect’s specific risks with the inevitable, system-
atic risks that the overall economy thrusts
upon it.

Valuation is an important tool for analyz-
ing economic value, but business strategy is
the key to creating it. Yet even more so than
valuation, most software engineers seem to
see business strategy as a riddle wrapped in
mystery inside an enigma. Given the careless,
overhyped, and even contradictory use of
mantras such as “time to market” and “ex-
plosive growth” in recent years, the confusion
is understandable.

Properly understood and executed, how-
ever, business strategy development is a me-
thodical, disciplined exercise based on solid
and rational principles. It’s thus worthy of
study by any software professional—espe-
cially given software’s highly strategic nature
in today’s business environment. Analyzing
market structure is an essential component of
strategy development. Is the average market
participant profitable? Are there high barriers
to entry? Answering questions such as these
can help strategists wisely select markets in
which to participate and avoid jumping
blindly onto the latest bandwagon. Competi-
tive strategy development in a chosen market
isn’t a matter of merely “playing to win” but

involves making hard choices: Can high mar-
ket share be pursued profitably at these
prices? Is the nature of the service such that
we can differentiate our offering and justify
higher prices? Will shorter time to market re-
sult in a sustainable competitive advantage or
just an ephemeral flash in the pan?

The basic principles of market selection
and competitive strategy, accessible to any
software professional, were violated again
and again during the boom years. It’s unlikely
that the future will be so forgiving.

In this issue
From 21 submissions, we selected six arti-

cles, each addressing one of the top three lev-
els of ROI-related activities—cost-benefit
analysis, valuation, or business strategy. We
aim to provide, through illustrative examples,
a broad perspective on

� How different kinds of software organi-
zations define and use ROI in different
sectors and for different process- and
product-related decisions

� Emerging practical approaches for rea-
soning about ROI at the top three levels

“Calculating ROI for Software Product
Lines” and “Measuring the ROI of Software
Process Improvement” focus on cost-benefit
analysis. The first develops a business ration-
ale and classic ROI model for migrating a set
of software products to a product line, while
the latter addresses ROI specifically in the
software process improvement domain. The
next two articles focus on valuation. “The In-
cremental Funding Method: Data-Driven Soft-
ware Development” describes a valuation-
based method for release planning in the
context of incremental development. “Value
Creation and Capture: A Model of the Soft-
ware Development Process” describes a visual,
functional model for analyzing a software de-
velopment project’s value. To illustrate the
broad nature of strategic issues pertaining to
ROI, we selected two articles of very different
flavors. “The ROI of Software Dependability:
The iDAVE Model” describes a method for
exploring software dependability strategies
based on empirical cost and quality models.
“Marketplace Issues in Software Planning and
Design” gives a high-level overview of mar-
ketplace factors and strategies in commercial

M a y / J u n e 2 0 0 4 I E E E S O F T W A R E 2 1

Most software
engineers seem
to see business
strategy as a

riddle wrapped
in mystery
inside an
enigma.

software development, such as pricing, stan-
dards, switching costs, competition, and proj-
ect structuring.

Although these articles provide concrete
ideas of how to reason about ROI in the con-
text of software development, they don’t span
the whole ROI space. We thus identify addi-
tional resources in the related sidebar.

T o the practicing software engineer, fi-
nance and business strategy might
seem to be distant, irrelevant worlds.

But ignoring them isn’t in our best interest,
because they draw closer every day and offer
challenges that are as intellectually demand-
ing and satisfying as any in our own field. We
hope this special issue raises ROI awareness
in the software community.

2 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

About the Authors

Hakan Erdogmus is a senior research officer at the National Research Council,
Canada. His research interests include software engineering economics, agile software develop-
ment, and collaborative software development. He received his PhD in telecommunications
from INRS, Université du Québec. Contact him at NRC Inst. for Information Technology, Mon-
treal Rd., M-50, Ottawa K1A 0R6, Canada; hakan.erdogmus@nrc-cnrc.gc.ca.

John Favaro is the founder of Consulenza Informatica in Pisa, Italy. His research inter-
ests include software reuse, agile methods, and the value-based management of information
technology. He received his MS from the University of California, Berkeley. He is a founding
member of the International Society for the Advancement of Software Education. Contact him
at Consulenza Informatica, Via Gamerra 21, Pisa, Italy; jfavaro@tin.it.

Wolfgang Strigel is the founder and president of Software Productivity Center, a con-
sulting and products company, and of QA Labs, a contract testing company. His interests in-
clude collaborative software development, process improvement, project estimation, testing,
and software engineering economics. He has an MSc in computer science from McGill Univer-
sity and an MBA from Simon Fraser University. Contact him at strigel@spc.ca.

IEEE Software seeks articles for a special issue on how software de-

velopers handle the growing problem of guaranteeing desirable

software properties when systems and applications reside in a sea

of rapid, unpredictable, and largely uncontrollable change. Persis-

tent software attributes might be any of the classic “ilities,” in-

cluding (but not limited to) reliability, scalability, efficiency, security, usability, adaptability, maintainability, availabil-

ity, and portability. In particular, how can we strengthen systemwide ilities such as reliability and security, both

particularly susceptible to damage from change? How can specialized software help monitor, safeguard, enforce, or

reassert a desirable ility after changes occur? How have ilities been specified and engineered to make them less sus-

ceptible to rapid external change?

Manuscripts must not exceed 5,400 words including figures and tables,
which count for 200 words each. The articles we deem within the theme’s
scope will be peer-reviewed and are subject to editing for magazine style,
clarity, organization, and space.

call
F O R A R T I C L E S

Persistent Software
Attributes

Publication:
November/December 2004

Submission deadline:
1 June 2004

Guest Editors
Terry Bollinger

(terry@mitre.org)
Jeff Voas

(jmvoas@cigital.com)
Maarten Boasson

(boasson@science.uva.nl)

To submit: http://cs-ieee.manuscriptcentral.com
For detailed author guidelines, see:

www.computer.org/software/edcal.htm
or email software@computer.org

