
Integrating Feature Modeling with the RSEB

Proceedings of Fifth International Conference on Software Reuse, Victoria, B.C., 1998

Martin L. Griss
Laboratory Scientist

Hewlett-Packard Company,
Laboratories, Palo Alto, CA

griss@hpl.hp.com

John Favaro
Senior Software Engineering Consultant

Intecs Sistemi, Pisa - Italy
favaro@pisa.intecs.it

Massimo d’Alessandro
CASE Methodologist

Intecs Sistemi, Pisa - Italy
dalex@pisa.intecs.it

Abstract
We have integrated the feature modeling of Feature-

Oriented Domain Analysis (FODA) into the processes and
workproducts of the Reuse-Driven Software Engineering
Business (RSEB). The RSEB is a use-case driven systematic
reuse process: architecture and reusable subsystems are first
described by use cases and then transformed into object
models that are traceable to these use cases. Variability in
the RSEB is captured by structuring use case and object
models using explicit variation points and variants.
Traditional domain engineering steps have been distributed
into the steps of the architectural and component system
development methods of the RSEB. But the RSEB prescribes
no explicit models of the essential features that characterize
the different versions. Building on our experience in
applying FODA and RSEB to the telecom domain, we have
added explicit domain engineering steps and an explicit
feature model to the RSEB to support domain engineering
and component reuse. These additions provide an effective
reuse-oriented model as a ‘catalog’ capability to link use
cases, variation points, reusable components and configured
applications.

Keywords: reuse, domain engineering, use cases,
FODA, FODAcom, telecommunications, architecture, UML

1. Introduction
It is well-known in the reuse community that in order to

achieve high-levels of reuse, one must adopt a product-line
perspective. That is, one must develop an architecture and a
set of reusable assets well suited to express and efficiently
implement the different members of a family of related
applications. To do this, we perform a reuse-oriented analysis
of the “domain” in which these applications fall, and then
carefully design and construct the domain architecture and
reusable assets. This latter process is called domain
engineering. Since 1988, working individually and together
at Hewlett-Packard and at Intecs Sistemi, we have been
developing a systematic approach to domain-specific, object-
oriented software reuse. At Hewlett-Packard, we have
applied domain engineering techniques, OO methods, and
organizational design to our corporate reuse programs and to

customer reuse efforts. In 1997 we published a book on the
“Reuse-Driven Software Engineering Business (RSEB) with
partners from Rational Software Corporation, describing our
systematic approach [1]. At Intecs Sistemi we have been
involved for many years in the development of OO and reuse
design tools [2] for industrial and aerospace applications [3].
Over the past two years we have been involved in a
customization of the Feature-Oriented Domain Analysis
(FODA)[4] method for applications in the Italian telecom
arena. Most recently, we have combined our joint experience,
integrating FODA-derived ideas into the RSEB.

In this paper we will first briefly review the concepts of
Domain Engineering, the RSEB, and FODA, and explain
how FODA and parts of the RSEB were applied to the
telecom sector in the FODAcom project. We then describe
our latest contribution, the adaptation of the feature model
from FODA to provide a another model for the RSEB. This
model provides a high-level view of the domain architecture
and reusable assets to provide the reusers and the domain
engineer a more concise and expressive picture of the way to
build systems in the application family.

2. Background

2.1. Domain Engineering
Domain engineering (DE) is a key process needed for

the systematic design of an architecture and set of reusable
assets (components and other workproducts) that can be used
to construct a family of related applications or subsystems. It
is a systematic process that incorporates business criteria and
produces some supporting rationale, models and architectures
that enable better decisions to be made, recorded and
revisited for further revision, and for process improvement
based on learning. Domain engineering is a key part of
preparing a reliable architecture and components for reuse[5,
6].

Domain engineering starts with Domain Analysis (DA),
primarily a systematic analysis of commonality and
variability in a family of systems across a domain: example
systems, user needs, domain expertise and technology trends
are analyzed to identify and characterize elements that are

2

common to all family members, and also to deal with
elements that vary between family members. The subsequent
application engineering process is driven by both the
resulting components and the models and documentation
developed during DA. Most domain analysis methods use a
specific model to play a unifying role for asset reuse across a
family of systems. In contrast, most ordinary OO methods do
not explicitly support this family-oriented representation of
commonality and variability in either notation or method.

A domain model is a high-level description of the
application family; it provides a framework for describing the
essential characteristics, and deciding which application
features are appropriate for certain user or technical
requirements. A domain architecture is much more precise in
showing the structure of a typical (or all) applications in the
domain; it defines subsystems, and connections between
them, identifies key mechanisms and services.

Domain engineering involves specific requirements
analysis, architecture, component development and
packaging steps, summarized in Table 1. FODA and RSEB
will be described in the following sections. Steps 1-3 are
referred to as domain analysis, and steps 4-7 as asset or
component engineering. Several different domain
engineering methods have been developed [5]. They vary in
how they identify the domain effectively, and make
maximum use of available domain, architecture and systems
expertise. Some methods focus on how to select existing
exemplars for detailed analysis, while others focus on how to
collect, represent and cluster sets of so-called features.
Different applications in the same application family or
problem domain, are often compared or distinguished based
on their “features.” When developing an architecture and
component systems for reuse, it is important to understand
which features are provided by which parts of the set of
reusable assets, how features relate, and which features are
mandatory or optional for different applications.

Yet there has always been a certain degree of
disagreement among the various methods regarding the exact
nature of “features” and their role in domain engineering [5].
Our work has made a contribution to a more precise
understanding of feature modeling and its relationship to
recent requirements capture methods, particularly use case
modeling.

2.2. FODA
Feature Oriented Domain Analysis (FODA) was

developed at the Software Engineering Institute [4]. Its
thorough description of the Domain Analysis process made it
become one of the most popular methods in the 1990s. In
particular, FODA made a significant contribution to the
current popularity of model-driven analysis: the use of
several complementary views of a domain to convey
complete information about that domain.

TABLE I. FODA and RSEB Domain engineering steps
1. Domain identification and scoping - most applications consist of
several recognizable or distinct subsystems or sub-problems, only some of
which can be economically reusable. Thus it is important to decide which
parts are worth further treatment. In FODA, a context model is constructed.
In the RSEB, scoping closely related to decomposition into component
systems, and the high-level use case model (use cases and actors) that
describe the system architecture and context.
2. Selection and analysis of examples, needs and trends - there is a
delicate balance between reactive and proactive reuse. A set of reusable
components must anticipate future needs. Since this is difficult to do
reliably, and it is more expensive to build reusable software than regular
software, the reuse process must find the essential commonality and
variability, and prioritize which parts should be processed for reuse. Most
approaches selecting key examples, and extract their essential feature
sets. The examples chosen relate to domain scope and assessment of
user needs, market, technology and business trends.
3. Identification, factoring and clustering of feature sets - using
analysis models, tables and/or graphical means, features that appear
together (AND) or are variants to be selected from (OR, XOR) are
structured into a decision framework. Domain terminology is accumulated.
In FODA, an information model describes the domain entities and the
structural relationships among them, whereas in the RSEB a use case and
analysis object model is built. In FODA, a behavioral model describes the
dynamic relationships among the entities of the domain, corresponding
roughly to RSEB sequence and interaction diagrams. The FODA functional
model—related to the RSEB object models—describes the data flows
among domain entities. The FODA feature model, ties all of these models
together by structuring and relating feature sets.
4. Development of ‘domain’ or ‘generic’ model and architecture - from
these feature sets, a domain model summarizing the essential
characteristics of all/any application in the domain. Also developed is a
robust domain architecture relating core mechanisms, features,
subsystems and variants, using some architecture description. Architecture
shapes the resulting applications or subsystems, defines core services,
specifies interfaces precisely, and serves as a reference model and
functional blueprint. FODA domain architecture is closely related to the
overall RSEB layered architecture.
5. Representation of usable commonality and variability - generalized
subsystems, modules and functions are identified, and related to each
other as generalizations, specializations or alternatives.
6. Exploitation of commonality and variability - notations and
mechanisms are used to specify several (classes of) generic or
parameterized workproducts, some of which will become reusable.
7. Implementation, certification, and packaging of reusable
components - the ‘most important’ subset of the candidate reusable
assets and workproducts are implemented and released as certified,
reusable components, under configuration management. Assets use a
variety of technologies, ranging from components to generators, languages
and kits. Other reusable assets will be implemented as needed.

Explicit feature modeling is key in FODA, and is the
basis for much subsequent work.. FODA work at the SEI has
expanded into Model-Based Software Engineering,
positioning FODA as an integral part of domain-engineering
leading to application engineering [7]. The kinds of features
that can be considered has been enriched, explicitly
distinguishing those related to user visible functionality, from
those related to implementation issues.

2.3. RSEB
The Reuse-Driven Software Engineering Business

(RSEB)[1] is a systematic, model-driven approach to large-
scale software reuse. RSEB is based on Jacobson's OO

3

Software Engineering[8] and OO Business Engineering[9],
applied to an organization engaged in building sets of related
applications from sets of reusable components. Explicit use
case models are central to all steps that define architecture,
subsystems and reusable objects.

We use the Unified Modeling Language (UML)[10],
with extensions to model and specify application systems,
reusable component systems and layered architectures, and to
express system variability in terms of variation points and
attached variants. RSEB defines several model-driven
software development processes: Architecture Family
Engineering (develops a layered architecture), Component
System Engineering (develops systems of reusable
components) and Application System Engineering (develops
selected applications). These processes optimize for
robustness and reuse. Engineers and managers play specific
roles, such as Architect, Use-case Engineer, Component
System Engineer, Configuration Manager, etc.

Both RSEB and Hewlett-Packard’s domain analysis
method [11] derive considerable material from FODA, and
from Organizational Domain Modeling(ODM) [12]. ODM
highlights how and why “exemplars” (example systems that
characterize important aspects of the domain) are chosen and
analyzed to meet technical and stakeholder needs. It also
includes a significant emphasis on feature analysis.

2.4. FODAcom
Telecom Italia launched the FODAcom project in the

mid-1990s under the leadership of Telesoft S.p.A. to create a
customized version of FODA for applications in the telecom
domain. The choice of FODA as a point of departure comes
as no surprise. Telecom organizations, with their heavily
"feature-oriented" services, have always had a natural affinity
for FODA. In fact, much of the work on FODA since its
definition has been carried on by telecom organizations, for
instance, by Kang with the Korean telecom authority, and by
Bell Northern Research in Canada [13] and NORTEL in the
United States [14, 15].

Intecs was tasked with the methodological lead in the
FODAcom project. Contacts with Hewlett-Packard led to
early introduction of several key concepts from the RSEB
into FODAcom, which soon focused on using primarily the
feature model as a concise synthesis of the variability and
commonality represented in the other RSEB models,
especially the use case model. This early experience led to a
synthesis of ideas, expressed in the remainder of this paper.

3. Featuring RSEB
FODA is quite compatible with the RSEB: it is a model-

driven approach, with domain information captured in
several different models reflecting different points of view of

the domain. Hence the combination of aspects of FODA and
RSEB are generally quite complementary.

Experience with FODAcom exposed the incompleteness
of the RSEB with respect to domain analysis. In the RSEB,
we distributed DA-like activities across the various processes
that develop the system architecture and create component
systems. The RSEB method uses features informally,
suggesting that different features characterize the different
systems that can be constructed from the reusable component
systems. Features are related to use cases or parts of use
cases, and lightly related to implementation details or
operating constraints. Unlike domain engineering methods
such as FODA, RSEB provides no explicit feature models or
steps that construct and transform such feature models.

In the following sections, we describe in more detail the
primary contribution of this paper: integrating the FODA-like
feature model with the use-case driven RSEB to produce
FeatuRSEB – the “featured RSEB”.

3.1. Features vs. Use Cases
The original FODA purpose for feature analysis was:

“… to capture in a model the end-user’s (and customer’s)
understanding of the general capabilities of applications in a
domain.” This is sounds like use case modeling. When
FODA first appeared in 1990, use cases were not yet as
widely accepted for OO requirements analysis or as central to
OO software engineering as they are today. It is now clear
that feature analysis anticipated much of modern thinking on
requirements capture techniques. But, this also leads

naturally to the question: What is the relationship between
feature modeling and use case modeling?

As shown in Figure 1, the use case model and the feature
model serve different purposes. The use case model is user
oriented; the feature model is reuser oriented. The use case
model provides the “what” of the domain: a complete

Use case

model

Feature Model
user Reuser

System Engineer Domain Engineer

Figure 1 Different unifying models for different audiences.

4

description of what systems in the domain do. The feature
model provides the “which” of the domain: which
functionality can be selected when engineering new systems
in the domain.

Use case modeling relieves feature modeling of the
“double duty” it was performing in the original FODA
definition. Use cases now gather and describe user
requirements on system functionality—under the control of
the system engineer—and they do a better job of it. The
feature model can focus on what it does best: organize the
results of commonality and variability analysis in
preparation for domain engineering and reuse access. This
is the province of the domain engineer.

In the telecom sector, lack of explicit feature
representation can be especially problematic, even in the
presence of use case modeling. First, use case models do not
explicitly reveal many of the implementation or technical
features prevalent in telecom systems, such as” switch types.”
Second, telecom services can require very large numbers of
use cases for their descriptions; and when the use cases are
parameterized with RSEB variation points describing many
extensions, alternatives, and options, the domain engineer
can easily lose his way when architecting new systems.
Reusers can easily get confused about which features and use
cases to use for which application systems. Here the feature
model can play a central organizing role, as discussed in the
following section.

3.2. The “+1” Model of Domain
Engineering

In the RSEB, we subscribe to the “4+1 View” approach
to architecture popularized by Rational methodologist
Philippe Kruchten [16]: develop several models (analysis,
design, etc.) to represent important architectural views, plus
one model that ties them all together. In the RSEB this
unifying role is played by the use case model. RSEB doesn’t
consider features to be a central concern, nor does it contain
an explicit DA process. Thus there is no single model in the
RSEB that becomes the reference (that is, the “+1” model)
for directly recording information about features and their
commonality and variability in a domain.

FODAcom partially updated FODA by providing side-
by-side use case models and explicit feature models. In
FeatuRSEB we go further by integrating explicit domain
analysis and RSEB elements to work together effectively.
The feature model is no longer “side-by-side” with only the
use case model, but with all of the other models. The feature
model takes “center stage” and assumes the role as the “+1”
model for domain engineering. The feature model provides
an abstract and concise syntax for expressing commonality
and variability in the domain. In the following subsections we

explore the implications of this central, unifying role of the
feature model in domain engineering.

3.2.1. Less is More: the added value of Domain
Analysis

Simos [12] and Arango [5] especially have pointed out
that domain analysis and domain engineering involve a
combination of both analysis and synthesis. Even though the
domain analysis process starts with the analysis of existing
systems and other available information, its purpose is not
just to merge and re-organize everything into a unified model
from which the different application systems can be
instantiated. In fact, the domain model and the domain
architecture serve two purposes. First, they describe in a
systematic way how existing systems in the domain are
actually built, by introducing terminology and structure that
summarize the common and different characteristics of
existing systems. Second, and more important, they
determine how “good” systems should be built in the future.
This represents their true added value.

In several cases, the “domain” as such does not fully
exist as such before the analysis is performed. Thus when a
exemplar system considered in the analysis was built, some
domain characteristics may have been ignored, leading to
solutions that could be recognized as obsolete or replaceable
given the broader view of the problem delivered by the
domain analysis. This means that at the end of the analysis,
when the domain is clearly defined, an exemplar system
initially taken as a reference for the domain definition, may
itself not be fully compliant with the domain definition.

During analysis of several exemplars, we might discover
that some systems provide certain features and others do not.
For example, some telecom switches might offer the call
waiting service, and others not. But on closer examination
and reflection, we realize that all (or a large subset of) future
systems should include some functionality or feature. For
example, we might move an optional feature, or little used
feature, to become a mandatory feature. Likewise, the
analysis of existing systems might initially suggest that two
features are mutually exclusive, but on reflection, it makes
sense to design systems in which they could both be selected.
For example, some phone systems provide both pulse or tone
dialing at the flick of a switch. This synthesis involves
innovation, and may require a (significant) change in
architecture, mechanisms, or corresponding implementation.

Part of the reason for having an explicit feature model in
addition to a use case model is to make such choices and
opportunities much clearer, and easier to analyze. The feature
model in FeatuRSEB provides the central repository for
organizing the results of this creative process. There are
several kinds of features (mandatory, optional, variant) that

5

can be used to describe the essence of the domain, as well as
some of its major variations:
• Mandatory features correspond to a core capabilities

embodying the main domain characteristics at the
problem level, and constitute the “infrastructure” of the
domain—the first step toward a domain architecture.

• Optional features correspond to the identification of
some capabilities or characteristics which may be
unnecessary in some systems of the domain. A feature
which does not appear in all exemplar systems
considered in the domain analysis does not necessarily
become optional. Optional features indicate secondary
properties of the domain, in contrast with the primary
properties associated with mandatory features.

• Variant features correspond to alternative ways to
configure a mandatory or an optional feature. These are
not simply a list of all alternative ways to do something
as found in the systems under examination, but rather a
selection of them, or better, a revision of them.
Thus the domain analysis process should carefully

“critique” the exemplar systems (and other assets), since a
broader point of view usually leads to the identification of
inadequate or incomplete solutions. Special attention should
be paid to discriminate between “optional” and “missing,”
and between “alternative” and “obsolete/inadequate”
solutions. This admonition is certainly true at requirement
and specification level but is even more effective at the
architectural level. In fact is quite possible that the domain
architecture which results from the domain engineering phase
will not be simply a template from which all the other
architectures and details of the individual pre-existing
systems (the exemplars) can be formally derived. Due to the
creative process of domain analysis, some particular
solutions are made obsolete and a more advanced, integrated
and flexible architecture should result, allowing reuse of
domain specific component systems. All of this is recorded in
the feature model.

3.2.2. A Catalog and Roadmap

The feature model is used as a catalog of feature
commonality and variability. It needs to be as concise as
possible. The feature model contains a well-organized
collection of items that have been selected according to a
process that includes deciding what should or should not
become a visible feature of systems in the domain. This is
similar to the more familiar systems engineering data
dictionary. Distilled from many sources, it is an organized,
selective, and normalized catalog of terms that becomes the
reference for terminology used by project developers. In a
domain engineering context, the data dictionary corresponds
closely to the domain terminology dictionary. Whereas the
use case model has to cover all of the requirements of

individual systems in the domain, the feature model need not
(and should not) include all possible features, but only those
which the domain analyst deems important. Thus,
paradoxically, the added value of a feature identification
process isn’t its completeness with respect to the space of all
possibilities, but rather its “incompleteness”—it synthesizes
only the essential items relative to the domain
objectives.Now consider how the reuser approaches this
catalog of features when building a new system in the
domain. He has a complete specification of the domain given
by the RSEB use case model of the domain (using uses and
extends relationships and variation points). The feature
model provides a “configuration roadmap” through the use
case model, guiding through an understanding of what can be
combined, selected, and customized in his system. This
schematic roadmap also expresses semantic constraints that
can’t be found in any of the other domain models—for
example, “this operating system can’t be selected together
with that hardware.” And the feature model references
characteristics that are hard to express directly as simple use
cases, such as performance constraints, etc.

3.3 Notation for Features
In this section we consider notational aspects while

developing a more concrete example. Not all features are
automatically related to complete (or even partial) use cases,
and therefore traditional use case notation is not immediately
suitable as a feature notation. A much better starting point is
the notation of variation points that was introduced in RSEB.
Variation points reflect parameterization in the domain in an
abstract manner, and appear in—and are traceable across—
several RSEB models, not just the use case model. The
following preliminary feature model for telephone service
provision is inspired by work at MCI[17].

An easy-to-use feature model is particularly effective for
“rapid creation of new services,” leading to decreased cycle
time in creating and deploying such systems. There is a group
of basic features that the user sees as capabilities, but not all
of these features would appear in use cases; some come from
detailed implementation and configuration choices in
deployable telecom systems; others from domain experts and
others from analysis of typical switch and network
configurations. While some features can be associated with
use cases and variations, others must be associated with types
of actors, or details such as included or omitted subsystems,
parameters in objects, choice of target platform, etc. These
only appear in later design or implementation models.

In the telecom domain, quite a few of the characterizing
features are already known by domain experts without
detailed analysis of use cases. These can be used to build an
initial feature model. Or, some of them might be known to
exist a priori, such as knowing that a switch type is a PBX
switch. Likewise, some common and variant services

6

Announce-
ments

VariableP.I.N.

Decision

Time of
Day

Routing

Day of
Week

Routing

Date of
Year

Routing

Holiday
Schedule

Re-route
if busy

Called
off-hook

Caller
off-hook

800-
number

action

entry

PTPconference

voicevideo

type

individual

called caller

billing

POTSISDNT1

line quality

PABX

exchange

Phone Service

Route
Call

Play
dial
tone

Announce-
ment

input

pulse tone

Dialing mode

Mandatory Vp-feature,
use time_bound

Variant
feature

Optional
Vp-

feature

Optional
feature

Legend

Optional feature

Vp- feature (XOR)

Vp-feature , use time
bound (OR)

Composed of

Figure 2 A high-level view of the feature model for Rapid Telephone Service Creation.

described by use cases are also known early. Thus a
rudimentary requirements model or initial use case model
might exist even before serious domain engineering has
begun. Both of the models provide concepts and terminology
for describing, analyzing and structuring the other sources of
information as domain engineering proceeds.

The feature model is represented in UML as a linked set
of feature elements containing data describing attributes of
the features, such as name, kind, etc. These feature elements
are linked together by a set of relationships (typically UML
dependencies or refinements), used to build up trees or
networks of features. Some of the feature elements may also
have relationships (typically a trace) to elements in other
models, such as use cases, variation points or objects. We
find it useful to display the feature model at several levels of
detail (or views): one view is the simple feature tree or graph,
showing feature names, major relationships, and a few
attributes, as illustrated in Figure 2. This view may itself be
filtered to show more or less detail. Thus, we have embraced
the multiple-view approach for working with the feature
model itself.

The set of features shown in Figure 2 can be specified
and structured using the notation summarized in the legend:
• the composed_of relationship. A feature can be modeled

as composed of several sub-features, following a
decomposition/ aggregation abstraction mechanism. In
the example, the feature "Phone Service" is composed of
"exchange", "type", "billing", "line quality" and "dialing
mode." The relationship is represented by a line from the
super-features to each of its components.

• the existence attribute. A feature can be mandatory or
optional. A mandatory feature must be selected in all the
configurations of the feature model, while an optional
feature may be disregarded in some configurations. An
optional feature is represented with a circle above the
feature name. A mandatory feature composed
exclusively of optional features requires at least one of
them to be selected in all the configurations.

• the alternative relationship: variation and variant
features. A feature can act as a variation point (called
variation point feature or vp-feature) in the model, while
other features play the role of its possible variants

(called variant
features). In the
example, the feature
"exchange" is a vp-
feature with "PBX" and
"individual" as variants.
From an inheritance
point of view
"exchange" is a more
abstract feature with
"PBX" and "individual"
as two possible
refinements. A feature
which defines a
variation point is
represented with a
diamond under its
name. A line is drawn
to each available
variant from the
diamond. In the textual
notation a particular
variant v of a variation
point vp is vp.v (e.g.
"exchange.PBX" or
"exchange.individual").
• the binding time
attribute of vp-features.
Vp-features can be
bound at reuse time, i.e.
when the reuser

accessess the domain infrastructure to configure reusable

7

assets for his development. In such a case, from the
reuser point of view, vp-features are an XORed
disjunction of their variants, since only one of them can
be selected. Instead, these features may be bound at use
time, i.e. included together in the system even though it
allows a run time or load time binding [4]. In this case,
from a reuser point of view, vp-features act as an ORed
disjunction of their variants, allowing the reuser to select
one or more. The binding time attribute is shown by the
color of the diamond of the feature: white means reuse
time, black means use time. In the example the features
dialing mode and billing are use time bound vp-features.

• the requires and mutual_exclusion constraints. These
rules define the semantic constraints on optional and
variant features, to give the model consistency. It is
possible to specify which features must be selected
together with a designated one. In the example the
feature "P.I.N" requires that the feature
"dialing_mode.tone" must be selected as well. It is also
possible to specify the incompatibility in the choice of
two features. In the previous example the selection of the
feature video implies that the "line_quality.POTS"
cannot be selected. These constraints can be expressed
as separate rules with respect to the diagram, directly in
the feature element using the requiresFeatures or
excludesFeatures attributes, or as UML constraints
attached the feature elements or relationships.
Each feature node in Figure 2 is in fact an iconic view of

a more complete feature element, perhaps implemented in
UML as a stereotype, «feature», of Class[10], just as we did

for the RSEB extensions[1,6]. The collapsed or iconic

notation for a feature will be shown just as the name, or name
decorated with small circle or diamond as in Figure 2, while
the expanded or full view might show as in the section of
Figure 2 reproduced in Figure 3. The various attributes
record the kind of feature, rationale, and notes, while the
relationships show special connections to other features,
constraints, and a «trace» to other model elements.
 Note that the existence attribute and the other relations are
orthogonal. This means that you can have a feature composed
of mandatory and optional features where an optional (or
mandatory) feature can in turn be a vp-feature.

3.3. Process for feature model
construction

 Model construction in our “featured RSEB” is a concurrent
process, just as the RSEB layered architecture, application

system and component system engineering processes are
concurrent. Figure 4 shows several sources of information,
including exemplars, requirements, domain experts, and early
domain models, which are fed into a concurrent and
continuous cycle of context modeling and scoping; feature
modeling; and use case modeling. (The other models are not
shown here for simplicity.) Each of the models is gradually
built up concurrently with others.

However, in our experience, some software engineers
(and managers) are quite uncomfortable with this concurrent
aspect. They would much prefer to either think of completely
developing the feature model before developing the use case
model, or (more effectively) think of a series of releases: first
develop increment 1 of the feature model, then increment 1
of the use case model. Then iterate to obtain increment 2, and
so on. However, as we illustrate, there is significant cross
feeding between feature model analysis and synthesis, and
use case development with variation point structuring.

Feature Model

Use case model

Domain scoping,

context modeling

Exemplars

Domain
Experts

Requirements

Early
domain
models

Concurrent
modeling
cycle

Sources

Figure 4 The concurrent model building process.
 «feature»

description: Acquire user authorization
source: Domain expert A
nature: functional
existence: mandatory
alternative: fixed
category: operational
bindingTime: reuse
issuesAndDecisions: Study other exemplers
notes:

input

 «feature»

description: Use P.I.N to id user
source: Exemplar 3
nature: functional
existence: optional
alternative: fixed
category: context
bindingTime: reuse
issuesAndDecisions: Must validate length of P.I.N
notes:

P.I.N
 «feature»

description: Implement new input mode
source: Exemplar 2
nature: functional
existence: optional
alternative: fixed
category: context
bindingTime: reuse
issuesAndDecisions: Need guidelines
notes: For example, “dial 1 for …”

Variable

 «feature»

tone

requires consists_of

Figure 3 Expanded view of a section of Figure 2,
showing more detail.

8

Let us consider now in more detail the process for
constructing the feature model in FeatuRSEB, beginning with
an analogy to the process for object model construction in
OOSE (Object-Oriented Software Engineering) or RSEB. In
both OOSE and the RSEB, the essential process is as
follows:
1. Identify Objects. Given a use case model, apply the

Boundary-Entity-Control pattern [1] to map each use case
onto a collaboration of (analysis) objects. Heuristics aid
in choosing names related to actorss and system data.

2. Homogenize the set of identified objects. Decide whether
similarly named objects are in fact the same object,
different instances of the same object, or distinct. Rename
or merge as appropriate.

3. Perform robustness analysis. Group objects into stable
subsystems, possibly re-grouping or merging objects.
Apply principles of cohesion and coupling to increase
robustness of object clusters.

4. Complete the set of operations. Examine the use cases
and assign responsibilities and operations to
corresponding objects. At the end of the process the use
case model can be rewritten in terms of the objects to
obtain the analysis use case model.

 The next step then maps analysis objects into design objects,
adding or modifying object to account for implementation
constraints. UML «trace» connect the use cases to
corresponding analysis objects, and analysis objects to
corresponding design objects. Other patterns can be applied
also. In the RSEB all the models use various mechanisms to
express variability in terms of variation points and attached
variants. In the RSEB process, the starting use case model is
a family use case model, representing a set of related use case
models by using variation points. This family variability
model will be defined during Application Family
Engineering when the family is architected. Some variability
could also be derived by merging several individual use case
models.

Now consider the process in FeatuRSEB. The first
extension to the RSEB process is to make explicit the set of
use case models used to construct family use case model,
each one associated with an exemplar system selected for
domain analysis. For our discussion, we refer to the family
use case model as the domain use case model, and so on.
Then we construct a feature model concurrently with the use
case model. Analogous to the process described above for the
RSEB, in FeatuRSEB we then perform
commonality/variability and added-value analysis/synthesis,
first on the use case models and then directly on the feature
model in a phase of robustness analysis. The feature model
construction process can thus be outlined as follows:
1. Merge individual exemplar use case models into a

domain use case model (known as the Family Use case
Model in the RSEB), using variation points capture and

express the differences. Keep track of the orginating
exemplars using «trace»

2. Create an initial feature model with functional features
derived from the domain use case model, (typically using
use case names as a starting point for feature names).

3. Create the RSEB analysis object model, augmenting the
feature model with architectural features. These features
relate to system structure and configuration rather than to
specific function.

4. Create the RSEB design model, augmenting the feature
model with implementation features.
Since the second and third steps give the feature model

its baseline structure, we describe them now in more detail.
These steps are largely based on the abstract concept of
RSEB variation points. As we will see, it is important to
determine what constitutes a good feature. As noted earlier,
not everything that could be a feature should be a feature.
Feature descriptions need to be robust and expressive.
Features are used primarily to discriminate between choices,
not to describe functionality in great detail; such detail is left
to the use case or object models.

3.3.1. Domain use case model construction

Construct domain actors model. Classify the set of
actors over all individual use case models on the basis of
their affinity (as perceived by domain experts, existing
domain descriptions, domain dictionary, etc.). Identify
synonyms and homonyms—actors with different names but
the same role (e.g. client and customer become user). Factor
common responsibilities between similar actors with abstract
actors (e.g. configuration manager and webmaster become
an abstract administrator actor). Trace each actor back to its
originating exemplar system, whereby abstract actors are
traced to all originating exemplar systems.

Construct domain use case model. Merge all exemplar
use case models, replacing original actors with those from the
domain actors model. For abstract actors, extract abstract use
cases (with commonalities) from the concrete use cases of
their concrete ancestors, using variation points. For all actors,
factor out similarities in the use cases in which they
participate, through the variation point mechanism. Trace
concrete and abstract use cases back to originating use cases
in the exemplar models.

Perform robustness analysis on domain use case
model. Consider the domain use case model as a
specification of a single system and perform a critical review
(consistency, redundancy, ambiguities) of the user
requirements implied by it, leading to further modifications.

9

3.3.2. Extracting functional features from the
domain use case model

This step assumes that a feature is only traced to one use
case (whereas one use case may correspond to many
features). This can be seen as a feedback constraint on the
use case model.

Identify mandatory and optional features. Create a
list of top level use cases, ordered according to their
frequency of occurrence in exemplar systems. Higher-
frequency use cases are more likely to generate mandatory
features, whereas lower-frequency use cases will generate
more optional features. Not all use cases will or should
generate features—the experience and judgment of the
domain analyst is important here. Heuristics assisting feature
analysis can be found in the literature. Examples are the
Context-Operational-Representation classification in FODA
[4] and the concept starter set of ODM [12].

Decompose features into sub-features. For each
feature identified, decompose as appropriate according to the
structure (e.g. use and extends relationships) of the related
use case in the domain use case model.

Identify vp-features and their variants. If the source
use case of a feature contains variation points, consider
decomposing the feature into as many sub-features as
variation points, possibly as vp-features. Trace each vp-
feature back to its source variation point in the case model.

Perform robustness analysis on the feature model.
Analyze and restructure the feature model as a whole for
consistency and integrity, introducing semantic constraints
such as mutual_exclusion and requires as appropriate. An
important restructuring activity is the identification of new
feature categories which could cause homogeneous features
to be grouped in separate hierarchies [12].

As noted earlier, during the construction of the other
models the same scenario may occur. For example during
architectural model construction some analysis may identify
variations and commonalities, leading to the definition of
variation points. Once again, this must result in an extension
of the feature model (or the realization that the variation
point can reference an existing feature). This will create
features that relate to system structure and configuration
rather than to specific function.

In summary, although several models are constructed
during featured RSEB domain analysis, the process is
primarily driven by the construction of the feature model as a
result of the “other” analyses, placing it side-by-side with all
the other models. It is in this way that the feature model
functions as a “roadmap” to the other models: the reuser first
selects features from the catalog, from which he is led to the
associated variation points in the detailed models. This
roadmap capability allows us to identify further guidelines
related to feature definition: optional and vp-features not

related to any variation point in any model are suspected of
not being good features. Conversely, variation points not
related to any feature cannot be exploited effectively by
reusers.

3.4. Tool support for FeatuRSEB
In this section we consider the kinds of tools we are

considering for the concepts we have presented in this paper.
Tool Support for Feature Analysis. Basic support for the

construction and manipulation of the feature model has
already been developed for original FODA [18]. The RSEB
book describes some tools to support Component System
Engineering and process-driven development, and these are
also useful in this context. For the featured RSEB we would
add multiple view capabilities (e.g. “outline mode”) as well
as selective viewing, zooming, suppression of optional nodes,
etc. Some of this capability might be obtained directly or
with some customization from an existing OOA tool, such as
Rational Rose, Platinum Paradigm Plus or the UML-NICE
toolset of Intecs, using the UML extension mechanisms.

Repository-based tool support. Tools focused
specifically on domain analysis and feature modeling (such
as the abstract feature tree viewer) might be best developed
separately, with access to a common model repository. For
example, in our research at HP Laboratories we will explore
the UML-based Microsoft Repository. This repository
presents itself as an OLE server (ActiveX object), and so can
be easily managed from Visual basic, or interfaced to many
existing UML tools. The repository meta-model is expressed
in UML, and can be extended to include other kinds of
elements, such as features. Another approach to tool
architecture we might explore would be to use CORBA to
integrate tool objects, and take advantage of the IDL
interfaces defined for the UML 1.1 tool exchange facility.

Support for Traceability. All the models in the featured
RSEB process are traceable to each other. A tool which
allows definition, modification and navigation of the
traceability relationships (as hypertext) would provide
valuable assistance to the domain engineer. It could show the
feature tree represented as a graphical map from which to
access in a direct way (e.g. by mouse click) relevant places in
the other models. Also, an automatic warning may appear
whenever a new variation point is created in a model,
reminding and signaling its traceability with a feature. This
traceability between features and variation points—a special
“feature” of FeatuRSEB—would particularly benefit from
tool support.

Strong integration with configuration management. The
close relationship between reuse and Configuration
Management (CM) was already appreciated by Intecs in the
development of the Intecs' ReuseNICE toolset [3]. CM can
be used in FeatuRSEB to manage the combination of the
features and of the respective variation points in the models.

10

Strong integration with CM facilities would provide strong
support for the “catalog” and “roadmap” characteristics of
FeatuRSEB discussed in this paper.

4. Conclusion
By starting from the use case based RSEB models which

already incorporate variability and some aspects of domain
engineering, we have been able to integrate the RSEB and
standard FODA processes and models. UML and RSEB
provide a natural base, requiring only a few extensions. UML
stereotyping provides an explicit representation for the
feature model. The resulting FeatuRSEB feature models are
simpler than those in original FODA, focusing on the feature-
oriented parts for domain-engineering purposes. These
feature models act as a convenient catalogue or index into the
commonality and variability present in use case and object
models, simplifying the task for the reuser. We have outlined
a FeatuRSEB domain analysis process as an extension to the
RSEB process, and hinted at tools to support the process of
constructing and revising the models.

Not only does this seem like a natural and robust
extension to the simplified treatment of features in RSEB, but
more importantly, this FeatuRSEB combination has been
applied to the telecom business in the earlier form of
FODAcom. It provides a robust and easy to use way of
characterizing the many hundreds of reuse-oriented features
and use case variants.

Next steps involve the exploration of appropriate tool
support for our feature-extended RSEB models. One route
would be to start from a standard UML tool (e.g. Rational
ROSE) and add RSEB and FODA extensions using the UML
extension mechanisms. Another route would be to create or
modify existing reuse tool-sets (such as Intecs' ReuseNICE or
UML-NICE) to add more direct support for UML, FODA,
and RSEB.

5. Acknowledgments
We thank Sholom Cohen, Patricia Cornwell, Steven

Fraser and Mark Simos for several useful comments on a
previous version of this paper. Their suggestions greatly
improved the flow and focus of this expanded treatment.

6. References
[1] I Jacobson, M Griss, P Jonsson, Software Reuse: Architecture,

Process and Organization for Business Success, Addison-
Wesley-Longman, May 1997.

[2] M D’Alessandro, PL Iachini, A Martelli, The Generic Reusable
Component: An Approach to Reuse Hierarchical OO Designs,
Proc. Second International Workshop on Software
Reusability, IEEE Press, 1993, pp. 39-46.

[3] M. D’Alessandro, Reuse and Configuration Management in
HOOD: the SCALE experience, DASIA 96—Data Systems in

Aerospace, ESA Publications, 20-23 May 96, Rome.

[4] K Kang et al, Feature-Oriented Domain Analysis Feasibility
Study, SEI Technical Report CMU/SEI-90-TR-21, November
1990.

[5] G Arango, Domain Analysis Methods, in W. Schãfer et al.,
Software Reusability, Ellis Horwood, Hemel Hempstead,
UK, 1994.

[6] ML Griss, Domain Engineering And Variability In The Reuse-
Driven Software Engineering Business, Object Magazine,
Dec 1996.

[7] S Cohen, R Krut, S Peterson and J Withey, Models for Domains
and Architectures: A Prescription for Systematic Software
Reuse, Proceedings of AIAA Computing in Aerospace 10,
San Antonio, TX, March, 1995. Pages-125.

[8] I Jacobson et al, Object-oriented software engineering: A use
case driven approach, Addison-Wesley, Reading, MASS.
1992.

[9] I Jacobson et al, The Object Advantage - Business Process
Reengineering with Object Technology, Addison-Wesley,
Menlo Park, CA, 1994.

[10] G Booch, I Jacobson and J Rumbaugh, The Unified Modeling
Language, Version 1.1, OMG Submission, Sept 1, 1997.

[11] P Collins-Cornwell, HP Domain Analysis: Producing Useful
Models for Reusable Software. Hewlett-Packard Journal,
47(4), August 1996. Pp. 46-55.

[12] STARS. Organization Domain Modeling (ODM) Guidebook,
Version 2.0. STARS Technical Report STARS-VC-
A025/001/00, Lockheed Martin Tactical Defense Systems,
Manassas VA, June 1996.

[13] S Fraser, D Leishman, R McClellan, "Patterns, Teams, Domain
Analysis", in SIGSOFT Software Engineering Notes, Special
Issue - 1995 Symposium on Software Reusability, 1995.

[14] R. Krut, N. Zalman, Domain Analysis Workshop Report for
the Automated Prompt and Response System Domain
(CMU/SEI-96-SR-001). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1996.

[15] N S Zalman, Making the Method Fit: An Industrial Experience
in Adopting FODA, Proc. Fourth International Conference in
Software Reuse, IEEE Press, Los Alamitos, CA, 1996, pp
233-235.

[16] P. Kruchten, The 4+1 View Model of Architecture, IEEE
Software, 42-50, November 1995.

[17] B.S. Ku, A Reuse-Driven Approach for Rapid Telephone
Service Creation, Proc. Third International Conference in
Software Reuse, IEEE Press, 1994.

[18] R. Krut, Integrating 001 Tool Support into the Feature-
Oriented Domain Analysis Methodology, CMU/SEI-93-
TR11, July 1993.

	Introduction
	Background
	Domain Engineering
	FODA
	RSEB
	FODAcom

	Featuring RSEB
	Features vs. Use Cases
	The “+1” Model of Domain Engineering
	Less is More: the added value of Domain Analysis
	A Catalog and Roadmap

	Notation for Features
	Process for feature model construction
	Domain use case model construction
	Extracting functional features from the domain use case model

	Tool support for FeatuRSEB

	Conclusion
	Acknowledgments
	References

